quadratic binomial - traduction vers russe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

quadratic binomial - traduction vers russe

TAYLOR SERIES
Newton's binomial series; Newton binomial; Newton's binomial; Newton binomial theorem

quadratic binomial      

математика

квадратный двучлен

quadratic irrationality         
MATHEMATICAL CONCEPT
Quadratic surd; Quadratic irrationality; Quadratic Irrational Number; Quadratic irrationalities; Quadratic irrational; Quadratic irrational numbers

математика

квадратичная иррациональность

quadratic surd         
MATHEMATICAL CONCEPT
Quadratic surd; Quadratic irrationality; Quadratic Irrational Number; Quadratic irrationalities; Quadratic irrational; Quadratic irrational numbers

общая лексика

квадратичная иррациональность

Définition

Binomial
·adj Consisting of two terms; pertaining to binomials; as, a binomial root.
II. Binomial ·noun An expression consisting of two terms connected by the sign plus (+) or minus (-); as, a + b, or 7 - 3.
III. Binomial ·adj Having two names;
- used of the system by which every animal and plant receives two names, the one indicating the genus, the other the species, to which it belongs.

Wikipédia

Binomial series

In mathematics, the binomial series is a generalization of the polynomial that comes from a binomial formula expression like ( 1 + x ) n {\displaystyle (1+x)^{n}} for a nonnegative integer n {\displaystyle n} . Specifically, the binomial series is the Taylor series for the function f ( x ) = ( 1 + x ) α {\displaystyle f(x)=(1+x)^{\alpha }} centered at x = 0 {\displaystyle x=0} , where α C {\displaystyle \alpha \in \mathbb {C} } and | x | < 1 {\displaystyle |x|<1} . Explicitly,

where the power series on the right-hand side of (1) is expressed in terms of the (generalized) binomial coefficients

( α k ) := α ( α 1 ) ( α 2 ) ( α k + 1 ) k ! . {\displaystyle {\binom {\alpha }{k}}:={\frac {\alpha (\alpha -1)(\alpha -2)\cdots (\alpha -k+1)}{k!}}.}
Traduction de &#39quadratic binomial&#39 en Russe